
Ambiguity in Real Languages

In actual programming languages ambiguity occurs most often in
expressions involving operators (where it can be fixed hierarchically)
and in if-then-else constructs.

Most languages, including BPL, have a grammar rule similar to

S ::= if (E) S else S | if (E) S | T
(T refers to other forms of statements)

With this grammar the sentence
 if (e1) if (e2) s1 else s2
can be parsed two ways:

if (e1)
 if (e2)
 s1
else
 s2

if (e1)
 if (e2)
 s1
 else
 s2

There is no simple rewrite of the grammar (that I know of) that
fixes this problem. Most languages leave the rule ambiguous,
disambiguate it internally by designing their parsers to always
choose the second of the parse trees:

if (e1)
 if (e2)
 s1
 else
 s2

and tell programmers that a dangling else always goes with the
nearest "unelsed" if. Of course, most languages allow compound
statements (statements grouped together with braces), and
using these the programmer can indicate which grouping is
desired.

Here is a simple grammatical way to fix the ambiguity:

 S ::= if (E) s else S fi | if (E) S fi | T

If we want to group "else s2" with the inner if we can only write

if (e1)
 if (e2)
 s1
 else
 s2
 fi
fi

To link "else s2" with the outer if we must write
if (e1)
 if (e2)
 s1
 fi
else
 s2
fi

Each of these expressions leads to only one parse tree.

Sadly, this never caught on so our grammars remain ambiguous.

